Unveil User’s Architectural Preference in VR


In our previous stories, we have continuously discussed infinite possibilities where a virtual reality (VR) can be utilized as a useful tool to explore the mind of the users. It becomes extraordinarily powerful when combined with technology, such as eye-tracking, EEG analysis, and neuroimaging, that in all tries to understand and unveil things originally hidden deep inside human’s mind. In particular, the latest research review — “Combination of Virtual Reality and Eye tracking: Explore the Mind of Consumers” — was about the development of a gaze-based assistant system in a virtual supermarket. The proposed system was able to provide individualized recommendations based on a consumer’s preference, which was determined by the customer’s attention level.

How can we know deep psychology inside preference?

The results of the previous research is inspirational as it has not only shown that the virtual supermarket can induce quite an active interaction between human and technology but also inferred that the customers’ in-time preference can be measured and adapted to the virtual environment. Yet, there is still a pending issue inside. Why did the consumer stare at a particular product longer than other products, did he like it more or was it rather because he strongly disliked it? What kind of feeling, or true reaction occurred inside his mind when he searched through granola of multiple choice? The bare suggestion that eye-tracking technology provides itself, though powerful, still cannot tell us what specifically people have in their minds.

The combined use of VR and EEG: Explore preference

Source: hippocratesineurope.com

The preference, or liking, can be rephrased into the term “affective response,” and it belongs to human emotions that is so much complicated than to be simply defined and determined by the superficial gaze information. On contrary, our brain which actively reacts to all sorts of stimuli contains much information about what we see and how we feel. Therefore, in this week, we decided to move inside of a research that aimed at investigating deeper nature of preference in a virtual reality (VR) through the use of electroencephalography (EEG) — “Affective response to architecture — investigating human reaction to spaces with different geometry.”

Investigating emotional response to spaces

The field of architecture is one of the most prominent areas that deal with the interaction between humans and the environment. As people react differently to various spaces they enter into, architects should be sensitive to those feelings in order to construct a space which is not only suitable for its use but also attractive to the mind of the users. In other words, searching for the right way to design an architectural space is enduring, but fundamental to most of the architects. A lot of people assume that it is the designers’ responsibility and ability to figure out the perceptual and cognitive influence of architectural space on people. However, much can be identified with the help of scientific measurement and analysis than merely with an individual’s insight. Hence, the research aimed at investigating emotional and cognitive reactions that are generated by various types of spaces through the quantification and measurement of EEG.

In order to achieve the stated objective, the research team has conducted two phases of the experiment. In the first stage, the study centered upon observing human behavior in a virtual environment through analyzing the participants’ self-assessment result. But above all, why did they choose VR? When designing an experiment setup, there always exists a trade-off between keeping control of experimental variables and presenting a realistic environment. In this situation, the virtual reality allows to manipulate experimental controls while maintaining design features in constant. Therefore, the research has chosen the virtual environment as a substitute for reality so as to overcome the trade-off. Then how did they design the virtual environment to observe human reactions to different types of architectural spaces?

Figure.1. Plan and sections of the four designed VR spaces

They have built four types of virtual environments: a square symmetrical space (Sq); a round-domed symmetrical space (Ro); a sharp-edged asymmetrical space with tilted surfaces (the surfaces refer to walls and a ceiling) (Sh); a curvy-shaped asymmetrical space with rounded smooth surfaces with no corners (Cu). The primary intention why they designed four different types of spaces in such way was to examine how people feel about interior with complex forms that have breaks and curves (Sh and Cu), as compared to a simple structure (Sq and Ro).

Figure.2. Upper left, external view of the four designed VR spaces

The participants were asked to enter each of the four spaces by walking via joystick; they passed through the corridor, opened the door, explored the space and left after they finished their exploration. After that, they filled out a questionnaire about their experience in each of the space, and rated their preference to it on a 5 point Likert scale.

In the second stage of the experiment, the new framework of examining physiological responses of humans to architectural space geometry has been adapted. Having the participants wear a wireless EEG device during the investigation, the same trial conducted in the first stage was held again to analyze the participants’ brain activity. In other words, the subjects walked through and explored the space as they did in the first experiment, but this time with wearing Emotive EPOC device.

VR experiment with SURVEY versus EEG

The results of the two experiments were revealed to be complementary. The first experiment could suggest that there exist some differences of what people felt about each space in terms of efficiency, aesthetic point of view, safety, pleasantness and level of interests. In addition, it was inferred from the respondents that participants who have no expertise in the field of design have a different tendency of space preference from those who work as designers.

Fig.3. Experiment 1

Then how was the result of the second experiment, the enhanced version of the first one with a reinforced analysis methodology? The participants’ brainwaves were successful in directly proving the different reactions of spaces which were indicated in the first experiment. What is more notable, however, is that the EEG examination could suggest an additional insight.

The figure below illustrates the NPC 1 and NPC 2 mapping of a participant, dots of each color indicate four different kinds of spaces. The first graph is based on a 10-s recording window while the second one focused on the first 2-s of exposure to a certain space. When looking more information and making comparisons between both of the two graphs, it is observed that different reactions to each space can be well distinguished in the early time window. That is, the adaptation and emotional response to an area occur within the short period. Besides, this finding is in line with other studies on eye-tracking which revealed that viewers of an artwork spend their first 2-s in doing a sweep of the image and grasping the overall gist.

Fig.4. Experiment 2

In a nutshell, the experiments conducted in virtual reality were able to provide a better understanding of affective response to architectural space, which can consequently contribute to building a better design that the users are in favor of. Furthermore, it was indicated that the use of EEG can visually show different physiological reactions in a more explicit way. When compared with the analysis of a subjective survey result, the brainwave can allow the researchers to get real time information about what happens in the users’ mind while they explore and adjust to a particular space.

Explore user mind with EEG in VR

To sum up, even the identical experiments and researches will yield qualitatively different results and contributions depending on the analysis methodology. In order to get a more profound understanding of humans and how they feel, think about and react to their surroundings, it is highly crucial to carefully collect and investigate physiological data. Electroencephalogram which has relatively high applicability can be a proper choice to a number of researchers.

If you are interested in trying out your research in VR and want to understand the users’ brain activities in the environment, visit our website www.looxidlabs.com and get relevant information of our newly released product, LooxidVR. This mobile-based VR headset is the world first to provide an interface for both the brain and the eyes through its embedded EEG sensors and an eye camera.


In addition, we are sending our newsletter on the VR trend and VR research periodically. Subscribe us if interested in receiving our newsletter.


  1. Affective response to architecture — investigating human reaction to spaces with different geometry | Architectural Science Review
  2. Visual interest in Pictorial art During an Aesthetic Experience | Spatial Vision
  3. In the eye of the Beholder: Employing Statistical Analysis and eye Tracking for Analyzing Abstract Paintings | Proceedings of the 20th ACM international conference on multimedia

Read More

Combination of Virtual Reality and Eye Tracking: Explore the Mind of Consumers


What do you think is the most relevant information about a product that can successfully induce a consumer’s purchase behavior? If you were a promotion manager for a granola selling company, how would you try to understand your potential consumers’ purchase behavior and deep psychology inside it?

Eye tracking: Keeping track of consumer attention

Source: bluekiteinsight.com

Eye tracking, the sensor technology that enables a device to measure exactly where and when people’s eyes are focused, is known to provide a better understanding of consumers’ visual attention. People tend to stare longer and look more times at the object that they are interested in. In addition, their visual path gives much information about cognitive flow. Therefore, carefully investigating visual logs of consumers — eye tracking data in other words — might help those who are desperately looking for ways to promote sales of particular products to get insignificant insight. On the consumer’s perspective, the general public might also be able to enjoy the far better shopping experience with time-to-time recommendation system based on their eye gaze information.

But how can we track consumer attention in the real world?

Recall your shopping experience. As you enter a supermarket and stand in front of the shelf stuffed with the product category you were looking for, you will skim through several products and finally pick one of them to your cart. As a matter of fact, the process of making purchase decisions happens within seconds. Consequently, it is highly important for retailing researchers to investigate consumers’ natural attentional process “in situ.”

The majority of current research, however, even when analyzing eye tracking data, is undertaken in laboratory settings. The laboratory environment would make it easy to exercise any experimental controls to investigate what you want to know deeply. On the other side, keeping experimental controls inevitably leads to low level of ecological validity. If the ecological validity level is poor, any kinds of well-analyzed result might become valueless as we cannot guarantee that similar effects would happen in the wild. This trade-off between control and ecological validity level has always been quite a serious issue for many researchers.

Virtual reality mobile eye tracking: A new research opportunity

Fortunately, the advent of a virtual reality (VR) is extending the previous trade-off frontier for the existing researches. It is because VR not only allows various levels of experimental control but also makes it available to build up shopping experience that feels like a reality. This sort of experimental environment now puts the researches on the point where the optimal combination of experimental control and ecological validity is implemented together. Therefore, with the help of VR, eye tracking technology can be used way more effectively to capture the user’s visual attention with better reliability. This week’s research — “Combining virtual reality and mobile eye tracking to provide a naturalistic experimental environment for shopper research”— has reviewed how mobile eye tracking can be used in the virtual reality and discussed the pros and cons of applying eye-tracking technology in terms of experimental environments. Particularly, this research focused on three different kinds of environments — conventional 2-D monitor based setting, virtual reality, and the real environment. Besides, the research has proposed the experiment in a virtual reality setting to discuss the validity of using mobile eye tracking in VR to study consumer behaviors.

Figure.1. Interacting in a virtual reality

First of all, this paper has set up criteria and rated both of relative superiority and inferiority among three different experimental settings for each criterion. The result of ratings, as written in the table below, might work as a useful guideline to decide which equipment to use and how to design eye tracking experiments. As we can read from the table, the “desktop eye tracking”, compared with “mobile eye tracking in the field”, has relative advantage in criteria that are concerned with experimental control (“Ease of creating/using non-existing stimuli”, “Ease of controlling and randomizing treatment and extraneous factors”, “Naturalness of the eye tracking task”, “Ease of analyzing and reacting to respondent’s attention and behavior in real time”, “Ease of generating large sample sizes”, “Ease of obtaining retailer permission to record”, “Ease of data preparation”, “Reliability of AOI coding”, “Reproducibility of experimental setting”). In contrast, “mobile eye tracking in the field” shows better rating over “desktop eye tracking” in criteria about the ecological validity (“Realism of stimulus display” and “Realism of interaction”).

Table.1. Criteria for deciding which environment to use — eye tracking specific criteria are highlighted in grey

How about “mobile eye tracking in virtual reality”? Interestingly, “mobile eye tracking in virtual reality” seems to be the compromising plan that appropriately mixes up relative advantages of both sides (“desktop eye tracking” and “mobile eye tracking in the field”). “Mobile eye tracking in virtual reality” is rated with high scores in almost every criterion where “desktop eye tracking” outperforms “mobile eye tracking in the field.” What is more, different from “desktop eye tracking,” “mobile eye tracking in virtual reality” is rated with enhanced scores in “Realism of stimulus display” and “Realism of interaction.” Although it still needs to tackle with the problem of cost-effectiveness and to meet further technological requirements concerning realistic visualization as well as convincing presentation of the setting, it is anticipated that mobile eye tracking in VR might open a lot of new research opportunities.

Fig.2. Trade-off between experimental control and ecological validity

Observing shopper behavior with eye tracking data in a virtual supermarket

Here is one of the new studies that adopted eye tracking in virtual reality in a new field: shopper research. In order to prove how mobile eye tracking in virtual reality can contribute to answering unresolved questions in the retailing study, this research team has tried to design the virtual store to test whether additional information about the product can help change the consumers’ final purchase decision.

In the virtual supermarket which was designed to create a realistic shopping experience, there were several shelves filled up with assortments of different granola and baking mixture products. The supermarket was presented in a virtual reality lab equipped with the front projection screen of the CAVE environment, and respondents went through the experiment wearing SMI eye tracking glasses. They underwent three successive stages. In the first stage, they had to choose the most preferred product out of 20 from the shelf. Then, the same set of products reappeared with the additional red frame highlighting the initially chosen product. Soon after that, the recommendations of six other products were highlighted with a blue frame. There was also a pop-up bubble with the additional information about the product presented right next to the product where the respondent gazed at for more than 200ms. In the end, the subjects were asked if they would stay with their initial product choice or not.

Fig.3. Example scenes of the virtual supermarket

The results showed that some subjects had changed their preference during the stages. In other words, their decisions were affected by additional information provided in VR, which in turn implies that the virtual supermarket induced quite an active interaction between human and technology, and that such an experiment setting is helpful in testing and observing consumer responses.

Soon, when eye tracking technology is integrated into hands of electronic devices, far more innovations in retailing researches and people’s shopping experiences would come true. For instance, a gaze-based assistant system which can provide individualized recommendations based off of a consumer’s preference might change the expectation of what shopping should be in the future.

Try out your research with virtual reality and eye tracking

Although the paper mainly focused on the field of shopping, such gaze-based assistant system that reflects a real-time preference of the user in a virtual environment can be widely used in many areas in which exploring people’s minds is important. If yet uncertain of its validity, check out some available technology that has successfully combined virtual reality with eye tracking and try it out to investigate no matter what you want to know. A great deal of valuable but so far hidden information such as consumers’ complicated in-store decision processes, critical interior design elements that significantly influence people’s mood, and more would be in your hand.

If you are interested in using a brain and eye interface in the virtual reality, visit our website www.looxidlabs.com and get relevant information of our newly released product that provides the world first mobile VR headset with an interface for both the eyes and the brain.


In addition, we are sending our newsletter on the VR trend and VR research periodically. Subscribe us if interested in receiving our newsletter.


  1. Combining virtual reality and mobile eye tracking to provide a naturalistic experimental environment for shopper research | Journal of Business Research
  2. How Eye Tracking Works | Blue Kite Insight

Read More

Getting to Know Your Working Stress Level through EEG in the Virtual Reality


How can a CEO ascertain that all of his or her members are working with their full capacity?
Are you sure that your brain is not too overloaded with the everyday working condition?


Now with the help of the combined use of electroencephalogram (EEG) and Virtual Reality (VR), you can find out the mental workload and stress level of you and other co-workers. Adopting this combined tool will lead to much more efficient operational decisions that achieve a fair distribution of workload and responsibility among various workers.

What affects job performance?

In fact, a multiple of variables, from workplace culture to the size of work equipment, hinder our ability from thoroughly assessing any situation, which ultimately affects job performance. Mainly, fatigue and stress are critical human factors that should not be taken lightly. EHS Today reported that about a half of US workers suffer from fatigue; this is not only the story of them, but the world workforce population complains of tiredness. The most critical problem in stress at work is that excessive workload and corresponding stress would directly lead to safety issues or sometimes severe injuries. In other words, tiredness affects our judgment and might put our health at risk, and thus, the perceived level of mental stress and workload for workers should be continuously monitored and evaluated so as to secure them from various industrial accidents. Though it sounds like something costly for managers to keep their eyes on, the action is imperative in a sense that managing workers’ stress level would contribute to their overall enhanced work effectiveness.

Bio-signals would help you check your mental workload

Yet, how can we assess one’s workload? There are mainly three types of workload assessment methodologies: subjective measures, performance measures, and physiological measures. Conventionally, people had to rely on the worker’s subjective assessment where the user determines and assesses how much he or she is mentally overloaded by themselves. As a matter of fact, a few versions of Subjective Workload Assessment Techniques (SWAT) have been developed. Nonetheless, such method cannot escape from its fundamental fail point that is it not sensitive enough to catch subtle mental workloads, which if accumulated, can, in turn, lead to chronic fatigue. The performance measures, which record performance scores and use these as an indicator of task demand, or difficulty, is way more objective but they are hard to be widely used due to their intrusiveness to various work settings.

Sensors | Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing

The best and the most straightforward way to make a diagnosis of our physical state is to look at bio-signals. Apart from the conventional methods such as statistical analysis of special events or keeping track of the worker’s complaints, physiological information can be considered to evaluate human factors. In addition, among many other bio-signals, electroencephalogram (EEG) is well-known for high time-resolution, possibility to continuously monitor brain stress with the adequate accuracy, and most importantly, the recognition of human emotion, stress, vigilance, etc. That is, EEG can be utilized to monitor mental workload, emotion, and stress of the workers when they perform any task. Still, some of you might worry about the way to collect EEG signals from the real working environment, as it is hard to be simulated physically. However, now that the virtual reality (VR) technology has been fairly well advanced, simulating your working condition in a virtual environment is not a matter.

Measurement of stress recognition of crew members by EEG in a Virtual Environment

This week’s research review illustrates the measurement of mental workload through EEG in a virtually simulated environment — EEG-based Mental Workload and Stress Recognition of Crew Members in Maritime Virtual Simulator: A case study. The research team has focused their study on the maritime industry where human factors are considered to be one of the leading causes of accidents, attributing to nearly 96% of the entire maritime accidents. Even though the industry has achieved a notable improvement of ship equipment and the overall system, human factors have not been considered enough to enhance the whole safety level. Therefore, the research aimed to study cause and effect of human errors of crew members by monitoring mental workload, emotion and stress level of the maritime trainees.

Fig.1. Simulator at SMA

To be more specific, in order to study the relationship between maritime trainees’ mental workload, stress levels, and task performance, the research team conducted the experiment with four maritime trainees forming the crew. Consisted of an officer on watch (OOW), a steersman, a captain, and a pilot with each assigned with duty corresponding to that of the real crew member, the crew had to navigate the vessel to the destination within SMA’s Integrated Simulation Centre (ISC) where a highly realistic environment was simulated. During their voyage, each of the subject’s emotion level (positive, neutral, negative), workload (no, minimal, moderate, high), and stress (low, medium low, moderate low, medium, medium high, moderate high, high, very high) had been observed and were further analyzed after the experiment.

Fig.2. OOW, captain, and pilot in the simulator during the experiment

The following describes the result of the analysis. The OOW, who always had to maintain watch-keeping was in the most negative emotional state; the captain, who was required to give our orders to the crew and assigned with the most significant responsibility showed the highest workload; the captain and the pilot, who had relatively higher responsibility than OOW and steersman were recorded with higher stress level as well.

Though the experiment is still in a preliminary stage of studying human factors, the success in monitoring emotion, mental workload, and stress implies that the proposed approach can be applied far beyond the maritime domain. The EEG-based human factors evaluation tools can be used for any industry that involves a multiple of people working together. In addition, it is anticipated that such mechanism can broaden the research that studies the human-machine interaction.

LooxidVR: The All-in-one device with VR compatible EEG sensor and eye tracking camera


Then what should be the next step? In order to achieve a more accurate measurement of human factors in a far more immersing environment, the data-collecting sensor and the environment which is being simulated should be correlated as closely as possible. LooxidVR, the winning product of CES 2018 Best of Innovation Award, is now here for you to provide a robust data acquisition of the user’s brain activity and even eye movement in VR environment. Made by Looxid Labs, Looxid VR is the world first mobile VR headset to provide an interface for both the eyes and the brain. Looxid Labs is ready to provide the integrated solution to many of those who are interested in exploring user’s mind. It will be especially helpful for researchers who are interested in recognizing diverse emotion state of the user such as stress, mental workload, and preference.

LooxidVR has begun pre-order from 1st, Feb. For more information, visit our website www.looxidlabs.com and do not miss the pre-order opportunity to enrich your current research and study.

Also, we are sending our newsletter on the VR trend and VR research periodically. Subscribe us if interested in receiving our newsletter.


  1. EEG-based Mental Workload and Stress Recognition of Crew Members in Maritime Virtual Simulator: A Case Study | http://ieeexplore.ieee.org/document/8120300/
  2. Human Factors In Safety: How do stress and fatigue affect work? | https://www.pro-sapien.com/blog/2017/10/human-factors-safety-how-stress-fatigue-affect-work/
  3. Workload Assessment | https://www.ergonomicsblog.uk/workload-assessment/

Read More